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CRYOMMIC WIND TUNIS= ! UNIQUE CAPABILITIES FOR THE AERODWANICIST

#	 Robert M. Hall

NASA Langley Research Center
Hampton, Virginia 23665

SUMMM

During 1971 the Langley Research Center began to develop the cryogenic

wind-tunnel concept as a practical means for improving ground simulation of

transonic flight conditions. Since that time, the Langley 1/3-meter transonic

cryogenic tunnel has become operational and the design of a cryogenic National

Transonic Facility has been undertaken. A review of some of the unique capabil-

ities of cryogenic wind tunnels is presented herein. In particular, the

advantages of having independent control of tunnel Mach number, total pressure,

and total temperature are highlighted. This separate control over the three

`	 tunnel parameters will open new frontiers in Mach number, Reynolds number,

aeroelastic, and model-tunnel interaction studies.
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The idea of increasing unit Reynolds number by cooling the tunnel test

gas to cryogenic temperatures was first proposed during the mid-1940's. The

concept remained essentially dormant until 1971 when it resurfaced at the NASA

Langley Research Center. As reported in references 1 to 6, the concept has been

developed at Langley from an idea into a practical scheme for both obtaining

high Reynolds number transonic flow at reasonable costs and for avoiding the

large model loads associated with high pressure tunnels. To verify the

soundness and practicality of the cryogenic approach, a 1/3-meter pilot

transonic cryogenic tunnel was built at Langley. The verification tests in

this timnel proved to be so successful that the pilot tunnel was designated

the Langley 1/3-meter transonic cryogenic tunnel and is now being used for

aerodynamic studies. Also as a result of this successful program in the 1/3-

0	 meter tunnel, a larger National Transonic Facility (NTF) is being designed and

will also be located at Langley. As explained in reference 7, the NTF will

take advantage of both the cryogenic concept and increased pressures to obtain

full-scale Reynolds numbers for most flight envelopes.

In addition to the benefits of reduced costs and lower aerodynamic loads,

the Langley studies also surfaced some unique operating envelopes which result

from the total temperature and pressure control available in a pressurized

cryogenic wind tunnel. These unique envelopes provide the aerodynamicist

with research capabilities never before available. While many of these

capabilities are described in reference i and in the other general papers

mentioned above, the purpose of this paper is to summarize and expand somewhat

the previous studies with regard to these unique research capabilities.

1
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SYNDM

a	 sound speed

C	 nondimensionalized aerodynamic coefficient

i	 characteristic length

a	 molecular weight

M	 Mach number

p	 pressure

q	 dynamic pressure

R	 Reynolds number

R	 universal gas constant

T	 temperature

u	 velocity

W	 wind-tunnel parameter

Y	 ratio of specific heats

V1	viscosity

P	 density

Subscripts

t	 total conditions

CRYOGENIC CONCEPT

A brief review of the cryogenic concept and its advantages is given in

figure 1, which shows the effects of temperature reduction for a given free-

stream Mach number, total pressure, and tunnel size:. The values of certain gas

properties relative to their ambient temperature values are plotted as a

function of total temperature in figure 1(a). As the total temperature de-

creases, density increases while sound speed and viscosity decrease. This
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behavior of the gas properties results in a large increase in Reynolds number

as the temperature drops, as shows in figure 1(b). While Reynolds number is

increasing, dynamic pressure remains constant and tunnel drive power actually

decreases. Consequently, the increase in Reynolds number due to temperature

reduction does not increase model loads and actually reduces drive-motor

energy consumption. Temperature reduction, therefore, minimizes many of the

problems associated with other approaches to high Reynolds number operation.

In the cryogenic concept as developed by Langley, the test gas is cooled

to temperatures as low as 80 K by the direct injection of liquid nitrogen into

the tunnel circuit. Because of the injection of liquid nitrogen, the test gas

is gaseous nitrogen rather than air.

FLEXIBLE OPERATING ENVELOPE

Because the amount of liquid nitrogen being injected for cooling can be

regulated, the pressurized cryogenic wind tunnel can operate over a very wide

range of total temperatures. As an example, the anticipated operating

envelope for the National Transonic Facility is shown in figure 2. The

minimum temperature boundary in this figure, as in later figures, will be

arbitrarily chosen to avoid saturation for local Mach numbers of 1.4. Since

existing experimental evidence suggests that this boundary may be conservative,

the placement of the actual minimum temperature boundary is currently under

study at Langley.

Also shown in figure 2 are the operating envelopes for both an atmospheric

and a pressurized conventional, ambient-temperature wind tunnel. In the

conventional atmospheric tunnel, using the air exchange method of cooling, the

experimentalist has essentially no control ever either the total temperature
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or the total pressure of the test. In a conventional pressurized tunnel,

using an air-water heat exchanger for cooling, the experimentalist can

vary the total pressure within the pressurization capability of the tunnel

being used, but has little control of temperature. Only the pressurized

cryogenic tunnel has the capability of significant total temperature

control.

UNIQUE CAPABILITIES

Because of the flexible operating envelope, pressurized cryogenic wind

tunnels offer unique experimental capabilities in addition to high Reynolds

number testing. These unique capabilities will allow systematic analyses of

the individual effects of Mach number, Reynolds number, dynamic pressure, and

wind-tunnel interaction on the aerodynamic coefficients of a flight vehicle.

Aerodynamic coefficients are a convenient non-dimensional representation

of the various forces, moments and pressures acting on a vehicle. Of course,

these coefficients will be a function of Mach number, M, and Reynolds number,

R, for an aircraft or model in free flight. If, as in the usual case, the

aircraft or model is not rigid, but elastic, its shape and therefore its

aerodynamic characteristics will also be a function of the loads acting on

the aircraft cr model which in turn are a function of the dynamic pressure,

q. Thus, for the free-flight case, the aerodynamic coefficients can be

written as a function of 14,R, and q. Letting C represent any of the

aerodynamic coefficients, we have

C = f(H, R, q)	 ( 1 )

I
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When testing models in hind tunnels, the aerodynamic coefficients are

influenced tgr the amount of blockage during the test, the sting interference,

'	 and other related aspects of the particular wind tunnel and model combination

being used. Even though corrections for these interference effects can be

introduced, the coefficients should also be considered weak functions of the

wind tunnel and model combination, which may be represented by some parameter,

W. Thus, for testing models in wind tunnels we have

C = F(M, R, q, W)	 (2)

With conventional wind t-unnels it has always been difficult to directly

measure the functional dependence of C on M, R, q, or W individually.

That is, it has been difficult to determine the partial derivatives

ac ac ac	 ac
am aR' 2q' or 8W

In a pressurized cryogenic tunnel, the first three of these derivatives can be

directly measured while much information about the fourth derivative can also

be obtained.

Determining Effects of Mach Number, aC/aM

Since any aircraft designed to fly at transonic speeds must, of course,

operate from low Mach numbers to sonic Mach numbers, it will experience varying

degrees of compressibility effects. Thus, it may be beneficial for the

0	 aerodynamicist tc determine the change in various aerodynamic coefficients, C,
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due to Mach ==bar changes while holding R and q constant. To determine

under what conditions in the wind tunnel this is possible, expressions for R

and q may be examined. By definition

R =	 (3)

Substituting for p from the equation of state of a perfect gas and replacing

velocity with Mach number multiplied by sound speed, one finds that

R =lF
One may increase R either by increasing p, M, or Z or by decreasing T

and therefore V. Next, q is defined as

q a P
2
	

(5)

Substituting Mach number multiplied by sound speed for velocity results in

q=Ul.
	

(6)
c

Thus, q is independent of tunnel temperature.

Equations (4) and (6) may be used to construct a constant dynamic :res-

sure envelope as shown in figure 3. Although *he val,:es of Y and m used

are those for gaseous nitrogen, the envelope a riies to air as well because,

as noted by Adcock in reference L, the prcrertes of air are essentially the



pressure range, and temperature range of the NTF.

As seen in figure 3, pure Mach number effects can be analyzed by adjust-

ing the tunnel total pressure and total temperature in such a manner as to hold

the value of Reynolds number constant. As is also evident, a conventional

pressure tunnel will be able to change pressure and Mach number to keep

dynamic pressure constant, but it will not be able to keep Reynolds number

constant because it is restricted to a particular total temperature line.

Furtherwre, in a conventional tunnel vtu- gout pressure control, only one value

of q is possible at a particular Mach number. Consequently, only the pres-

surizer^ cryogenic wind tunnel will give the aerodynamicist the means of

directly measuring the change in. aerodynamics coefficients due to Mach number

effects while holding both dynamic pressure and Reynolds number constant.

Determining Effects of Reynolds :dumber, 3C /3R

Because of the increasing size of transport aircraft being designed, an

understanding of the effects of Reynolds number on complex flows, such as

shock-boundary-layer interactions, becomes crucial for the proper pr-Aiction

of aerodynamic characteristics. Thus, once again valuable information could

be gained if Reynolds number effects could be isclated from Mach number and

dynamic pressure effects.

Referring to figure 4, it is seen how such an experiment could be carried

out in a tunnel with total temperature and tctal pressure control. By holding

Mach number and total pressure constant, Reynolds number effects can be

measured by varying total temperature. A conventional tunnel, with or without

pressurization, is not able to directly measure this quantity.
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Many times Reynolds number studies have been undertaken in conventional

wind tunnels by varying model size. In addition to the high cost of multiple

models, the shortcoming of this approach is that the tunnel parameter. W, is

also changing. For example, if the different-sized models are tested in the

same tunnel, then W is changing due to the difference in blockage ratio. If

the different models are tested in various facilities to preserve the same

blockage ratio, then other differences may change W — sting shapes, test-

section geometries, tunnel calibrations, and so forth. Unfortunately, any

change in W may effectively mask any Reynolds number effect in the aerody-

namic coefficients.

Determining Effects of Dynamic Pressure, aCjaq

A11 aircraft distort to varying degrees during flight because of the

necessity for both lift and low structural weight. Furthermore, with many

transonic wind tunnels using total pressures of 5 or more atmospheres, wind-

tunnel model designers also have to concern themselves with dynamic pressure

affecting model shape and aerodynamics. Valuable information on dynamic

pressure effects could therefore be obtained if dynamic pressure could "e

varied while holding the other test conditions constant.

A graph showing an operating envelope of a pressurized cryogenic tunnel

in a constant Mach number mode is shown in figure 5. The boundaries of this

graph were again drawn to approximate the s pecifications and capabilities of

NTF. The Mach number for this graph was token to be 1. By varying total

temperature and total pressure to keep Reynolds number constant, c^e may

isolate aeroelastic effects with a pressurized cryogenic wind tunnel. This

would not be possible in a conventional tunnel, with or without pressurization.,
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Effects of Tunnel Parame , r, 8C/8W

As was mentioned earlier in this report, aerodynamic coefficients measured

with a model mounted in a tunnel are a weak function of the model-tunnel inter-

action, which was symbolized by the parameter W in equation (2). The model-

tunnel interaction manifests itself in many ways — blockage ratio, sting

interference, streamline perturbations due to wall interferences, and so forth.

Many of these interactions, such as blockage ratio or streamline perturbations,

are dependent on the ratio of model size to test-section size.

The effects on the aerodynamic coefficients due to changes in the ratio

of model size to test-section size can be readily investigated in a pressur-

ized cryogenic tunnel. A series of geometrically similar models could be

built to different sizes for testing in a particular cryogenic tunnel. For

model lengths within a factor of 5, Reynolds number could be held constant by

compensating for the change in model characteristic length k with an appro-

priate change in temperature. Of course, N.ach number could be held constant

by crc erly adjusting fan speed, and dynamic pressure could be held constant

ty elding total pressure fixed. Thus, any change in aerodynamic character-

istics would be directly attributable to a difference in the ratio of model

..c t;::.rel size. Such a test program could furnish new information or. the c__

question of how large a model can be successfully tested in a given-sized

wind tunnel.
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CONCUMI G

This paper has reviewed and expanded studies made at the Langley Reserach
,

Center concerning the unique operating envelopes and the aerodynamic research

capabilities afforded by the pressurised cryogenic wind tunnel concept. This

new type of wind tunnel offers the aerodynamicist more than just high Reynolds

number capability. It offers the unique capabilities of directly measuring

the individual effects of Mach number, Reynolds number, and dynamic pressure

on the aerodynamic coefficients of a flight vehicle. In addition, the

pressurized cryogenic tunnel is ideally suited for further investigations into

the effects of wind-tunnel and model interaction.

•
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